May 23, 2022

Mookie Design

Unlimited Design for All

Projected environmental benefits of replacing beef with microbial protein

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hashempour-Baltork, F., Khosravi-Darani, K., Hosseini, H., Farshi, P. & Reihani, S. F. S. Mycoproteins as safe meat substitutes. J. Clean. Prod. 253, 119958 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Finnigan, T. J. A. et al. Mycoprotein: the future of nutritious nonmeat protein, a symposium review. Curr. Dev. Nutr. 3, nzz021 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stephens, N. et al. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Linder, T. Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur. 11, 265–278 (2019).

    Article 

    Google Scholar
     

  • Rubio, N. R., Xiang, N. & Kaplan, D. L. Plant-based and cell-based approaches to meat production. Nat. Commun. 11, 6276 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Food and Agriculture Organization of the United Nations. Food and agricultural data. FAOSTAT https://www.fao.org/faostat (accessed 26 March 2021).

  • Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Steinfeld, H. & Gerber, P. Livestock production and the global environment: consume less or produce better? Proc. Natl Acad. Sci. USA 107, 18237–18238 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Weindl, I. et al. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Glob. Planet. Change 159, 1–10 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Heinke, J. et al. Water use in global livestock production—opportunities and constraints for increasing water productivity. Water Resour. Res. 56, e2019WR026995 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article 

    Google Scholar
     

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Fehér, A., Gazdecki, M., Véha, M., Szakály, M. & Szakály, Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability 12, 4136 (2020).

    Article 

    Google Scholar
     

  • Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

    Article 

    Google Scholar
     

  • Stephens, N. & Ellis, M. Cellular agriculture in the UK: a review. Wellcome Open Res. 5, 12 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ciani, M. et al. Microbes: food for the future. Foods 10, 971 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sillman, J. et al. A life cycle environmental sustainability analysis of microbial protein production via power-to-food approaches. Int. J. Life Cycle Assess. 25, 2190–2203 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Järviö, N., Maljanen, N.-L., Kobayashi, Y., Ryynänen, T. & Tuomisto, H. L. An attributional life cycle assessment of microbial protein production: a case study on using hydrogen-oxidizing bacteria. Sci. Total Environ. 776, 145764 (2021).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Edwards, D. G. & Cummings, J. H. The protein quality of mycoprotein. Proc. Nutr. Soc. 69, E331 (2010).

    Article 

    Google Scholar
     

  • Souza Filho, P. F., Andersson, D., Ferreira, J. A. & Taherzadeh, M. J. Mycoprotein: environmental impact and health aspects. World J. Microbiol. Biotechnol. 35, 147 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Smetana, S., Mathys, A., Knoch, A. & Heinz, V. Meat alternatives: life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 20, 1254–1267 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Alexander, P. et al. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Glob. Food Sec. 15, 22–32 (2017).


    Google Scholar
     

  • Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Lapeña, D. et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microb. Cell Fact. 19, 19 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dietrich, J. P. et al. MAgPIE 4 – a modular open-source framework for modeling global land systems. Geosci. Model Dev. 12, 1299–1317 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Dietrich, J. P. et al. MAgPIE – An Open Source Land-Use Modeling Framework, v.4.3.4. Zenodo https://doi.org/10.5281/zenodo.4730378 (2021).

  • Jägermeyr, J., Pastor, A., Biemans, H. & Gerten, D. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nat. Commun. 8, 15900 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13, 024011 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mattick, C. S., Landis, A. E., Allenby, B. R. & Genovese, N. J. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environ. Sci. Technol. 49, 11941–11949 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Tuomisto, H. L. & Teixeira de Mattos, M. J. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45, 6117–6123 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Lynch, J. & Pierrehumbert, R. Climate impacts of cultured meat and beef cattle. Front. Sustain. Food Syst. 3, 5 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mendly-Zambo, Z., Powell, L. J. & Newman, L. L. Dairy 3.0: cellular agriculture and the future of milk. Food Cult. Soc. 24, 675–693 (2021).

    Article 

    Google Scholar
     

  • Järviö, N. et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat. Food 2, 1005–1013 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sustain. 1, 111–120 (2009).

    Article 

    Google Scholar
     

  • Jones, M., Gandia, A., John, S. & Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 4, 9–16 (2021).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (IPCC, WMO, 2018).

  • Smith, P. et al. in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2019).

  • Lotze-Campen, H. et al. Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric. Econ. 39, 325–338 (2008).


    Google Scholar
     

  • Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Müller, C. & Robertson, R. D. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).

    Article 

    Google Scholar
     

  • Dietrich, J. P., Popp, A. & Lotze-Campen, H. Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecol. Modell. 263, 233–243 (2013).

    Article 

    Google Scholar
     

  • Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article 

    Google Scholar
     

  • Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2014).

    Article 

    Google Scholar
     

  • Smil, V. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme Microb. Technol. 30, 305–311 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Shepon, A., Eshel, G., Noor, E. & Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 11, 105002 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kc, S. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article 

    Google Scholar
     

  • The World Bank. World Development Indicators. https://databank.worldbank.org/source/world-development-indicators (accessed 19 March 2019).

  • James, S. L., Gubbins, P., Murray, C. J. & Gakidou, E. Developing a comprehensive time series of GDP per capita for 210 countries from 1950 to 2015. Popul. Health Metr. 10, 12 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bodirsky, B. L. et al. mrvalidation: madrat data preparation for validation purposes. Zenodo https://doi.org/10.5281/zenodo.4317827 (2020).

  • Bodirsky, B. L. et al. Global food demand scenarios for the 21st century. PLoS ONE 10, e0139201 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wisser, D. et al. Global irrigation water demand: variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett. 35, L24408 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gasser, T. et al. Historical CO2 emissions from land-use and land-cover change and their uncertainty. Biogeosciences 17, 4075–4101 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • European Commission, Joint Research Centre/Netherlands Environmental Assessment Agency. EDGAR – Emissions Database for Global Atmospheric Research. https://edgar.jrc.ec.europa.eu (2011).