September 27, 2023

Mookie Design

Unlimited Design for All

Characterisation of urban environment and activity across space and time using street images and deep learning in Accra

  • Ezzati, M. et al. Cities for global health. BMJ 363, k3794 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Glazener, A. et al. Fourteen pathways between urban transportation and health: A conceptual model and literature review. J. Transp. Health 21, 101070 (2021).

    Article 

    Google Scholar
     

  • Sowatey, E. et al. Spaces of resilience, ingenuity, and entrepreneurship in informal work in Ghana. Int. Plan. Stud. 23, 327–339 (2018).

    Article 

    Google Scholar
     

  • Beek, J. & Thiel, A. Orders of trade: regulating Accra’s Makola market. J. Leg. Plur. Unoff. Law 49, 34–53 (2017).


    Google Scholar
     

  • Solomon-Ayeh, B. E., King, R. S. & Decardi-Nelson, I. Street Vending and the Use of Urban Public Space in Kumasi, Ghana. (2011).

  • Brown, A., Lyons, M. & Dankoco, I. Street traders and the emerging spaces for urban voice and citizenship in African cities. Urban Stud. https://doi.org/10.1177/0042098009351187 (2010).

    Article 

    Google Scholar
     

  • Karley, N. Flooding and physical planning in urban areas in West Africa: Situational analysis of Accra, Ghana. Theor. Empir. Res. Urban Manag. 4, 25–41 (2009).


    Google Scholar
     

  • Honingh, D. et al. Urban river water level increase through plastic waste accumulation at a rack structure. Front. Earth Sci. 8, 1 (2020).

    Article 

    Google Scholar
     

  • Douglas, I. et al. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 20, 187–205 (2008).

    Article 

    Google Scholar
     

  • Moulds, S., Buytaert, W., Templeton, M. R. & Kanu, I. Modeling the impacts of urban flood risk management on social inequality. Water Resour. Res. 57, e2020WR029024 (2021).

  • Grimes, J. E. et al. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit. Vectors 8, 156 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Johnson, S. A. M. et al. Myiasis in dogs in the Greater Accra Region of Ghana. Vector-Borne Zoonotic Dis. 16, 54–57 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • United Nations, Department of Economic and Social Affairs, & Population Division. World urbanization prospects: the 2018 revision. (2019).

  • ARUP and Cities Alliance. Future Proofing Cities Metropolitan Cities in Ghana. (2016).

  • Daramola, A. & Ibem, E. O. Urban environmental problems in Nigeria: implications for sustainable development. J. Sustain. Dev. Afr. 12, 124–145 (2010).


    Google Scholar
     

  • Lall, S. V., Henderson, J. V. & Venables, A. J. Africa’s Cities : Opening Doors to the World. (World Bank, 2017).

  • Randall, S. et al. UN Census “Households” and Local Interpretations in Africa Since Independence. SAGE Open 5, 2158244015589353 (2015).

    Article 

    Google Scholar
     

  • Randall, S. & Coast, E. Poverty in African households: The Limits of Survey and Census Representations. J. Dev. Stud. 51, 162–177 (2015).

    Article 

    Google Scholar
     

  • Soomro, K., Bhutta, M. N. M., Khan, Z. & Tahir, M. A. Smart city big data analytics: An advanced review. WIREs Data Min. Knowl. Discov. 9, e1319 (2019).


    Google Scholar
     

  • Joubert, A., Murawski, M. & Bick, M. Measuring the big data readiness of developing countries—Index development and its application to Africa. Inf. Syst. Front. https://doi.org/10.1007/s10796-021-10109-9 (2021).

    Article 

    Google Scholar
     

  • Kwan, M.-P. Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Ann. Am. Assoc. Geogr. 106, 274–282 (2016).


    Google Scholar
     

  • Yang, D., Qu, B. & Cudre-Mauroux, P. Location-centric social media analytics: Challenges and opportunities for smart cities. IEEE Intell. Syst. 36, 3–10 (2021).

    Article 

    Google Scholar
     

  • Yang, J., Hauff, C., Houben, G.-J. & Bolivar, C. T. Diversity in Urban Social Media Analytics. in Web Engineering (eds. Bozzon, A., Cudre-Maroux, P. & Pautasso, C.) 335–353 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-38791-8_19.

  • GSM Association. The Mobile Economy Sub-Saharan Africa. (2021).

  • Batran, M., Mejia, M. G., Kanasugi, H., Sekimoto, Y. & Shibasaki, R. Inferencing human spatiotemporal mobility in Greater Maputo via mobile phone big data mining. ISPRS Int. J. Geo-Inf. 7, 259 (2018).

    Article 

    Google Scholar
     

  • Kung, K. S., Greco, K., Sobolevsky, S. & Ratti, C. Exploring universal patterns in human home-work commuting from mobile phone data. PLoS ONE 9, e96180 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Wesolowski, A., O’Meara, W. P., Eagle, N., Tatem, A. J. & Buckee, C. O. Evaluating spatial interaction models for regional mobility in sub-Saharan Africa. PLOS Comput. Biol. 11, e1004267 (2015).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Jay, J. et al. Neighbourhood income and physical distancing during the COVID-19 pandemic in the United States. Nat. Hum. Behav. 4, 1294–1302 (2020).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Shi, W., Zhang, A., Zhou, X. & Zhang, M. Challenges and prospects of uncertainties in spatial big data analytics. Ann. Am. Assoc. Geogr. 108, 1513–1520 (2018).


    Google Scholar
     

  • Blumenstock, J., Cadamuro, G. & On, R. Predicting poverty and wealth from mobile phone metadata. Science 350, 1073–1076 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blumenstock, J. Don’t forget people in the use of big data for development. Nature 561, 170–172 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arku, R. E. et al. Personal particulate matter exposures and locations of students in four neighborhoods in Accra, Ghana. J. Expo. Sci. Environ. Epidemiol. 25, 557–566 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dionisio, K. L. et al. Within-neighborhood patterns and sources of particle pollution: Mobile monitoring and geographic information system analysis in four communities in Accra. Ghana. Environ. Health Perspect. 118, 607–613 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samadi, Z., Yunus, R. M., Omar, D. & Bakri, A. F. Experiencing urban through on-street activity. Procedia – Soc. Behav. Sci. 170, 653–658 (2015).

    Article 

    Google Scholar
     

  • Glaeser, E. L., Kominers, S. D., Luca, M. & Naik, N. Big data and big cities: The promises and limitations of improved measures of urban life. Econ. Inq. 56, 114–137 (2018).

    Article 

    Google Scholar
     

  • Goel, R. et al. Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain. PLoS ONE 13, e0196521 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Ibrahim, M. R., Haworth, J. & Cheng, T. Understanding cities with machine eyes: A review of deep computer vision in urban analytics. Cities 96, 102481–102481 (2020).

    Article 

    Google Scholar
     

  • Weichenthal, S., Hatzopoulou, M. & Brauer, M. A picture tells a thousand…exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environ. Int. 122, 3–10 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Biljecki, F. & Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 215, 104217 (2021).

    Article 

    Google Scholar
     

  • Rzotkiewicz, A., Pearson, A. L., Dougherty, B. V., Shortridge, A. & Wilson, N. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 52, 240–246 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Suel, E., Polak, J. W., Bennett, J. E. & Ezzati, M. Measuring social, environmental and health inequalities using deep learning and street imagery. Sci. Rep. 9, 6229 (2019).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Time to discover new places in Africa. Ghana, Senegal and Uganda now on Street View! Official Google Africa Blog. https://africa.googleblog.com/2017/02/time-to-discover-new-places-in-africa.html.

  • Krylov, V. A., Kenny, E. & Dahyot, R. Automatic discovery and geotagging of objects from street view imagery. Remote Sens. 10, 661 (2018).

    Article 

    Google Scholar
     

  • Zhao, Z.-Q., Zheng, P., Xu, S.-T. & Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, L., Cheng, Q., Wang, Z. & Shao, Z. ‘Big data’ for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 63, 337–345 (2015).

    Article 

    Google Scholar
     

  • Liu, J., Zhang, S., Wang, S. & Metaxas, D. Multispectral Deep Neural Networks for Pedestrian Detection. in Procedings of the British Machine Vision Conference 2016 73.1–73.13 (British Machine Vision Association, 2016). doi:https://doi.org/10.5244/C.30.73.

  • Rahman, M. M., Sainju, A. M., Yan, D. & Jiang, Z. Mapping Road Safety Barriers Across Street View Image Sequences: A Hybrid Object Detection and Recurrent Model. in Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery 47–50 (Association for Computing Machinery, 2021).

  • Fan, Q., Brown, L. & Smith, J. A closer look at Faster R-CNN for vehicle detection. in 2016 IEEE Intelligent Vehicles Symposium (IV) 124–129 (2016). https://doi.org/10.1109/IVS.2016.7535375.

  • Campbell, A., Both, A. & Sun, Q. (Chayn). Detecting and mapping traffic signs from Google Street View images using deep learning and GIS. Comput. Environ. Urban Syst. 77, 101350 (2019).

  • DeVries, T., Misra, I. & Wang, C. Does Object Recognition Work for Everyone? Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR Workshop 52–59.

  • Ghana Statistical Service. Greater Accra Population. (2020).

  • World Bank. Rising through Cities in Ghana : Ghana Urbanization Review Overview Report. (2015).

  • Clark, S. N. et al. Small area variations and factors associated with blood pressure and body-mass index in adult women in Accra, Ghana: Bayesian spatial analysis of a representative population survey and census data. PLOS Med. 18, e1003850 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Bixby, H. et al. Quantifying within-city inequalities in child mortality across neighbourhoods in Accra, Ghana: a Bayesian spatial analysis. BMJ Open 12, e054030 (2022).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Musah, B. I., Peng, L. & Xu, Y. Urban Congestion and Pollution: A Quest for Cogent Solutions for Accra City. IOP Conf. Ser. Earth Environ. Sci. 435, 012026 (2020).

    Article 

    Google Scholar
     

  • Birago, D., Opoku Mensah, S. & Sharma, S. Level of service delivery of public transport and mode choice in Accra, Ghana. Transp. Res. Part F Traffic Psychol. Behav. 46, 284–300 (2017).

  • Clark, S. N. et al. High-resolution spatiotemporal measurement of air and environmental noise pollution in Sub-Saharan African cities: Pathways to Equitable Health Cities Study protocol for Accra, Ghana. BMJ Open 10, 1 (2020).

  • Gough, K. V. Continuity and adaptability of home-based enterprises: A longitudinal study from Accra, Ghana. Int. Dev. Plan. Rev. 32, 45–70 (2010).

    Article 

    Google Scholar
     

  • Rooney, M. S. et al. Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana. Sci. Total Environ. 435–436, 107–114 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Asante, L. A. & Mills, R. O. Exploring the Socio-Economic Impact of COVID-19 Pandemic in Marketplaces in Urban Ghana. Afr. Spectr. 55, 170–181 (2020).

    Article 

    Google Scholar
     

  • Zhou, Z. et al. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana. Environ. Res. Lett. 8, 044025 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Senadza, B., Never, B., Kuhn, S. & Asante, F. A. Profile and determinants of the middle classes in Ghana: Energy use and sustainable consumption. J. Sustain. Dev. 13, p11 (2020).

    Article 

    Google Scholar
     

  • Urban Age Programme. Cities and Social Equity – Reports. https://urbanage.lsecities.net/reports/cities-and-social-equity#3-three-perspectives-on-inequality (2009).

  • Clark, S. N. et al. Space-time characterization of community noise and sound sources in Accra, Ghana. Sci. Rep. 11, 11113 (2021).

    Article 
    PubMed Central 
    CAS 
    PubMed 

    Google Scholar
     

  • Alli, A. S. et al. Spatial-temporal patterns of ambient fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra. Environ. Res. Lett. 16, 074013 (2021).

  • Forehead, H. & Huynh, N. Review of modelling air pollution from traffic at street-level – The state of the science. Environ. Pollut. 241, 775–786 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, A., Bodhe, G. L. & Schimak, G. Development of a traffic noise prediction model for an urban environment. Noise Health 16, 63 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, U. W. & Wang, Z. S. Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environ. Model. Softw. 22, 1750–1764 (2007).

    Article 

    Google Scholar
     

  • Ganji, A., Minet, L., Weichenthal, S. & Hatzopoulou, M. Predicting traffic-related air pollution using feature extraction from built environment images. Environ. Sci. Technol. 54, 10688–10699 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, K. Y., Pinheiro, P. O. & Weichenthal, S. Predicting outdoor ultrafine particle number concentrations, particle size, and noise using street-level images and audio data. Environ. Int. 144, 106044 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Qi, M. & Hankey, S. Using street view imagery to predict street-level particulate air pollution. Environ. Sci. Technol. 55, 2695–2704 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suel, E. et al. What you see is what you breathe? Estimating air pollution spatial variation using street-level imagery. Rem. Sens. 14, 3429 (2022).

    Article 

    Google Scholar
     

  • Yoada, R. M., Chirawurah, D. & Adongo, P. B. Domestic waste disposal practice and perceptions of private sector waste management in urban Accra. BMC Public Health 14, 697 (2014).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Owusu, G., Agyei-Mensah, S. & Lund, R. Slums of hope and slums of despair: Mobility and livelihoods in Nima, Accra. Nor. Geogr. Tidsskr. – Nor. J. Geogr. 62, 180–190 (2008).

  • Ezeh, A. et al. The history, geography, and sociology of slums and the health problems of people who live in slums. The Lancet 389, 547–558 (2017).

    Article 

    Google Scholar
     

  • Turley, R., Saith, R., Bhan, N., Rehfuess, E. & Carter, B. Slum upgrading strategies involving physical environment and infrastructure interventions and their effects on health and socio-economic outcomes. Coch. Database Syst. Rev. https://doi.org/10.1002/14651858.CD010067.pub2 (2013).

    Article 

    Google Scholar
     

  • Agyemang, E. The bus rapid transit system in the Greater Accra Metropolitan Area, Ghana: Looking back to look forward. Nor. Geogr. Tidsskr. – Nor. J. Geogr. 69, 28–37 (2015).

  • Citi FM. Aayalolo buses to ply Adenta-Accra route—Minister. Citi 97.3 FM – Relevant Radio. Always https://citifmonline.com/2017/03/aayalolo-buses-to-ply-adenta-accra-route-minister/ (2017).

  • Ministry of Transport Greater Accra Regional Coordinating Council. Transportation Master Plan: Greater Accra Region (Final Report). (2016).

  • Peppa, M. V. et al. Towards an end-to-end framework of CCTV-based urban traffic volume detection and prediction. Sensors 21, 629 (2021).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar
     

  • Fedorov, A., Nikolskaia, K., Ivanov, S., Shepelev, V. & Minbaleev, A. Traffic flow estimation with data from a video surveillance camera. J. Big Data 6, 73 (2019).

    Article 

    Google Scholar
     

  • Palinwinde Jacobs, D. Activate CCTV cameras installed in Accra to curb crime—Okoe Vanderpuije. Citinewsroom – Comprehensive News in Ghana (2021).

  • Jili, B. Africa: Regulate surveillance technologies and personal data. Nature 607, 445–448 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang, W., Wang, X., Zhang, C. & Yang, X. Factors in Finetuning Deep Model for Object Detection With Long-Tail Distribution. in 864–873 (2016).

  • Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. YOLOv4: Optimal Speed and Accuracy of Object Detection. https://github.com/AlexeyAB/darknet. (2020).

  • Tan, M., Pang, R. & Le, Q. V. EfficientDet: Scalable and Efficient Object Detection. in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 10778–10787 (2020). doi:https://doi.org/10.1109/CVPR42600.2020.01079.

  • World Bank Group. 2014 Land Cover Classification of Accra, Ghana. https://datacatalog.worldbank.org/search/dataset/0039825/c–2014-Land-Cover-Classification-of-Accra–Ghana (2014).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, S. J. & Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010).

    Article 

    Google Scholar
     

  • Tan, C. et al. A Survey on Deep Transfer Learning. in Artificial Neural Networks and Machine Learning—ICANN 2018 (eds. Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. & Maglogiannis, I.) 270–279 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-030-01424-7_27.

  • Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? in Proceedings of the 27th International Conference on Neural Information Processing Systems – Volume 2 3320–3328 (MIT Press, 2014).

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3296–3297 (IEEE, 2017). https://doi.org/10.1109/CVPR.2017.351.

  • Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. in Computer Vision—ECCV 2014 (eds. Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) 740–755 (Springer International Publishing, 2014). https://doi.org/10.1007/978-3-319-10602-1_48.

  • Kuznetsova, A. et al. The open images dataset V4. Int. J. Comput. Vis. 128, 1956–1981 (2020).

    Article 

    Google Scholar
     

  • Shorten, C. & Khoshgoftaar, T. M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 6, 60 (2019).

    Article 

    Google Scholar
     

  • Zoph, B. et al. Learning Data Augmentation Strategies for Object Detection. in Computer Vision—ECCV 2020 (eds. Vedaldi, A., Bischof, H., Brox, T. & Frahm, J.-M.) vol. 12372 566–583 (Springer International Publishing, 2020).

  • U.S. Geological Survey. Landsat-8 imagery. (2020).